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Frequency dependence of the first ultrasonic nonlinear parameter and the abnormally high third
harmonic signals measured in lead zirconate–titanate~PZT! ceramics suggest the introduction of a
revised theoretical model combining higher-order nonlinearity and generalized dispersion. The new
nonlinear dispersive equation has been solved by perturbation theory. A solution is found in the form
of a set of parameters whose magnitude is obtained from a fit of the experimental data. The
parameters are independent of frequency and initial amplitude. The model is applied to four
samples, and the results are discussed. The validity of the perturbation theory in these cases is
tested. ©1996 Acoustical Society of America.

PACS numbers: 43.35.Cg, 43.25.Ba, 43.38.Fx

INTRODUCTION

Peculiarities of sound wave behavior in crystals is shift-
ing the attention of scientists from the linear theory to more
complicated models which describe phenomena like dissipa-
tion, dispersion, and/or nonlinear propagation. To describe
sound propagation in solids in the linear approximation
~Hooke’s law approximation! one can write the longitudinal
wave equation in the form

r0
]2U

]t2
5M2

]2U

]a2
, ~1!

wherer0 is the unstrained mass density,U is the longitudinal
displacement,a is the distance measured along the propaga-
tion direction in the unstrained crystal, andM2 is a linear
combination of second-order elastic constants depending on
the direction of propagation~M25K2 , with K2 as listed in
Table I!. This formulation is convenient because it allows
one to account for a number of phenomena in a straightfor-
ward way. Forabsorption, one simply allows complex val-
ues ofM2.

To describenonlinearity one can account for propaga-
tion in a pure mode direction~for cubic lattices one of the
three principal directions!, by writing the differential wave
equation in the form1
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whereM353K21K3 is a combination of both second- and
third-order elastic constants, also depending on the direction
of propagation~see Table I!. Here,M4 contains elastic con-
stants up to the fourth-order (M45

3
2K213K31

1
2K4).

For dispersionone can modify Eq.~1! by inclusion of a
fourth-order derivative with respect to the propagation dis-
tance
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]a4
, ~3!

whereG2 is the dispersion constant.
The solution of Eq.~2! accounts for the generation of

second harmonics~and higher harmonics! during the propa-
gation of an initially sinusoidal wave of amplitudeA. This
solution can be obtained through use of a perturbation
technique2–4 or a more complicated Fourier analysis.1 Such a
solution has led to the introduction of the nonlinearity pa-
rameter, the negative ratio of the coefficient of the nonlinear
term to that of the linear term in the nonlinear wave equation

b52
3K21K3

K2
5

8A2

A2k2a
, ~4!

whereA is the amplitude of the initially sinusoidal wave at
the source andA2 is the measured amplitude of the generated
second harmonic at a propagation distancea; k52p/l is the
propagation constant. If the amplitude of the initial ultrasonic
wave is small enough, the amplitude of the third harmonic
signalA3 is expressed as1

A35
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2 G2, ~5!

in which K4 is a combination of fourth-order elastic con-
stants. In Cu single crystals~and almost all other crystals! the
amplitude ofK4 is of the order of 10K3. In experimental
situations using ultrasonic frequencies,k2a2 is generally of
the order of 105, so that for most crystalline samples one can
make the approximation

A3>
A3a2k4

32 S 3K21K3

K2
D 2. ~6!
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Recently Na and Breazeale5 found that the third har-
monic measured in lead zirconate–titanate~PZT! samples
was much too large to allow them to make the approximation
given in Eq.~6!. To satisfy their data they introduced a sec-
ond nonlinearity parameter which was expressed in terms of
measured quantities as

b25
32

a2k4
A3

A3 . ~7!

For most crystalline solids this would mean that

b25b2; ~8!

however, its definition allowed flexibility in data interpreta-
tion for PZT. Na and Breazeale stated that serious deviations
from Eq. ~8! in experimental data implies thatK4 no longer
is negligible and/or that a nonlinear equation different from
Eq. ~2! must be used to describe the nonlinear wave propa-
gation.

For single crystals, determination of the nonlinearity pa-
rameter from velocity measurements and harmonic genera-
tion yields values for the third-order elastic constants which
agree with other methods.6 The results are independent of
frequency. Also, the relationship given by Eq.~8! is followed
for single crystals whenever it has been tested.3 This means
that fourth order elastic constants in single crystals are in-
deed negligible.

When the nonlinear properties of PZT were investigated
they were found to be considerably different from those of
single crystals. Na and Breazeale used their measurements to
report for the first time a frequency dependence of the non-
linearity parameterb at room temperature. In addition, they
found that for their PZT samples the quantitiesb2 do not
satisfy Eq.~8! at 10 MHz. The observed third harmonic am-
plitudes were found to be much larger in PZT than one
would calculate from Eq.~6!.

In this paper we focus on the doubly anomalous behav-
ior of PZT ceramics and propose a solution from theoretical
analysis. The suggestions of Na and Breazeale about the role
of large fourth-order elastic constants and/or the use of a
different nonlinear equation have served as a starting point
for this theoretical investigation. First, we formulate the
model by combining the nonlinear equation of Thurston and
Shapiro~in which we assume thatK4 is non-negligible! with
a generalization of the dispersion equation. Then we use the
perturbation method to find an approximate solution which
we apply and discuss in connection with the physical prop-
erties of polarized and unpolarizedK1 andS1 PZT samples

~Table II!. Finally, we examine the error made by using per-
turbation theory in our model.

I. THEORETICAL MODEL

A. Generalization of the differential equation

The third harmonic signals observed by Na and
Breazeale5 were too large to satisfy Eq.~8!, in which the
influence ofK4 is considered to be negligible. For the unpo-
larized K1 sample at 10 MHz they observed a value of
b25103.8, whereasb2 would be only 57.8. For theS1 po-
larized sample at the same frequency the ratio ofb2 to b2 is
even more strikingly different from unity:b2/b

25127.
Since bothK2 andK3 are known from the measurement

of the velocity and the nonlinearity parameter at low fre-
quencies~e.g.,K2514.7531010 kg/ms2 andK35215631010

kg/ms2 for an unpolarizedK1 sample!, we can consider Eq.
~5! as a function ofK4 only. Substituting this equation into
Eq. ~7!, we obtain an expression forb2 as a function of the
fourth-order elastic constant. Knowing the experimentalb2
value, this relation can be inverted numerically forK4 or one
can estimate the fourth-order elastic constant from the inter-
section points of the graphs in Fig. 1. We have found that the
experimentalb2 value for the K1 sample can only be
reached for a value ofK4 which is at least three orders of
magnitude larger thanK3. In an analogous way we have
found that the values ofK4 for the other PZT samples must
be even larger: almost five orders of magnitude for the po-
larizedS1 sample.

As a consequence of these largeK4 values, the quantity
M4 (53/2K213K311/2K4) in Eq. ~2! must be large as
well. This means that this term is the most important term in
the expression for the third harmonic signal amplitude. In
this situation we introduce an approximation that replaces
Eq. ~6!:

A3>
ak3A1

3

24

M4

M2
. ~9!

TABLE I. K2 andK3 for @100#, @110#, and@111# directions.

Direction K2 K3

@100# C11 C111

@110# C111C1212C44

2

C1111C11212C166

4
@111# C1112C1214C44

3

C11116C112112C144124C16612C123116C456

9

TABLE II. Physical dimensions and properties of theK1 andS1 samples of
PZT ceramic.

Sample Velocity Density Thickness

K1-unpolarized 4334.1 m/s 7850 kg/m3 9.0331023 m
K1-polarized 4577.2 m/s 7850 kg/m3 9.0731023 m
S1-unpolarized 4320.0 m/s 8010 kg/m3 9.0731023 m
S1-polarized 4523.1 m/s 8010 kg/m3 8.8231023 m
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Indirectly, this expression calls for a new definition ofb2.
This new definition, which is distinguished by a prime, is

b285
24

ak3
A3

A3 . ~10!

This new definition makes it possible to obtain an approxi-
mate value of the fourth-order elastic constant in cases where
its influence is non-negligible. The third harmonic signal
measurements of Na and Breazeale have been analyzed in
this way. They suggest that higher-order elastic constants
should be taken into account in the nonlinear differential
equation.

Consequently, to make further investigation we start
with a generalized form of Eq.~2!, the general nonlinear
differential equation given by Thurston and Shapiro:1

r0
]2U

]t2
5

]2U

]a2
gS ]U

]a D , ~11a!

with

gS ]U

]a D5 (
n52

`

MnS ]U

]a D n22

5M21M3

]U

]a
1M4S ]U

]a D 2
1M5S ]U

]a D 31••• . ~11b!

In comparison with the linear equation, it is worthwhile to
note that the multiplier of]2U/]a2 is no longer a constant. It
is a series expansion in the strain]U/]a.

The dispersion effects are included in a first approxima-
tion by modifying the linear wave equation with a term pro-
portional to the fourth derivative of the displacement with
respect to the propagation distance, in analogy with the gen-
eralization of the linear wave equation@Eq. ~3!#. We have
found that this still does not give an adequate nonlinear
equation. Therefore, we have replacedG2 in Eq. ~3! by a
series expansion in the strain]U/]a. The combination of

FIG. 1. The influence ofK4 on the second nonlinearity parameterb2 @Eqs.~7! and~5!# for different samples of PZT. The intersection with the horizontal line
~experimental value ofb2! gives an indication of the magnitude of the fourth-order elastic constant.~a! K1-unpolarized→K4>2.531015 kg/ms2; ~b!
K1-polarized→K4>2.331015 kg/ms2; ~c! S1-unpolarized→K4>2531015 kg/ms2; ~d! S1-polarized→K4>7531015 kg/ms2.
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both nonlinear phenomena and dispersion effects lead to the
following equation:

r0
]2U

]t2
5gS ]U

]a D ]2U

]a2
1hS ]U

]a D ]4U

]a4
, ~12!

where

gS ]U

]a D5M21M3

]U

]a
1M4S ]U

]a D 21M5S ]U

]a D 31•••

~12a!

and

hS ]U

]a D5G21G3S ]U

]a D1G4S ]U

]a D 21G5S ]U

]a D 31••• .

~12b!

The purpose of our investigation is to determine the number
and magnitudes of terms required in Eq.~12! for an adequate
description of the behavior of PZT.

B. Approximate solution

Even thoughb, and especiallyb2, can be large for PZT
ceramics, the second and third harmonic amplitudes mea-
sured during the experiments are still small compared with
the fundamental amplitude. This means that we are looking
for small perturbations of an initially well-known waveform,
so that we can use perturbation theory to find a solution to
Eq. ~12!, and later check the validity of this approach.

We rewrite Eq.~12! in the form

r0
]2U

]t2
2M2

]2U

]a2
2G2

]4U

]a4

5FgS ]U

]a D2M2G ]2U

]a2
1FhS ]U

]a D2G2G ]4U

]a4
~13!

and propose a solution of this dispersive nonlinear equation
in the form

U5U01Uc ~14!

with U0 the solution of the simplest dispersive linear equa-
tion:
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]a2
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]4U0

]a4
50, ~15!

namely,

U05A sin~ka2vt ! with v5AM2

r0
kS 12

G2

M2
k2D 1/2,

~16!

in which A denotes the amplitude of the sinusoidal wave at
input ~zero propagation distance!. Substituting Eq.~14! into
Eq. ~13! and taking into consideration only the largest con-
tributions on the right-hand side~the zero approximation in
terms of the small factors containingUc,]Uc/]a,
]2Uc/]a2,•••!, we find that the correction termUc must sat-
isfy
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Substituting the zero approximation solutionU0 into Eq.
~17!, this can be written in the form

r0
]2Uc

]t2
2M2

]2Uc

]a2
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`
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where theXn are

X152(
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In Eqs.~18a!, ~18b!, and~18c!, the final factors in each term
are binomial coefficients defined as follows:

S nmD5
n!

m! ~n2m!!
. ~19!

For example, if one considers only the coefficientsMn and
Gn with n<6, Eq. ~18! becomes

r0
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]t2
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2F ~M52k2G5!k
5A4

8 Gsin@4~ka2vt !#2F ~M62k2G6!k
6A5

16 Gsin@5~ka2vt !#. ~20!

From Eq. ~18b! one notices that the coefficientsXn for n
even are influenced only by the nonlinear coefficientsMl and
dispersive constantsGl having odd indices. Similarly Eqs.
~18a! and ~18c! show thatXn for n odd is affected by non-
linear and dispersive coefficients having even indices.

In acoustics dispersion usually is negligible. ThusG2 is
very small. IfG2 were identically zero, the exact solution of
Eq. ~18! would be

Uc5 (
n51

`
aXn

2nkM2
cos@n~ka2vt !#. ~21!

Let us now assume thatG2 is very small, but not zero. In this
case, we introduce a more general series expansion

Uc5 (
n51

`

aBn sin@n~ka2vt !#1aCn cos@n~ka2vt !#

~22!

as a solution of Eq.~18!. The coefficientsBn andCn can be
dependent on the propagation distancea, but we will assume
that their derivatives with respect to distance is negligible.
By using this substitution and approximation, we find closed
expressions for the coefficientsBn andCn :

Bn5
2n2~n221!aG2k

4Xn

n4~n221!2a2G2
2k814k2n2~M222n2G2k

2!2
,

~23a!

Cn5
2nk~M222n2G2k

2!Xn

n4~n221!2a2G2
2k814k2n2~M222n2G2k

2!2
.

~23b!

Using these expressions, one can write the amplitudeAn of
thenth harmonic signal:

An5
auXnu

@n4~n221!2a2G2
2k814k2n2~M222n2G2k

2!2#1/2
.

~24!

The amplitudes of the second and third harmonics generated
by propagation of an initially sinusoidal wave over a distance
a in a dispersive nonlinear medium can be evaluated from
Eq. ~24! by usingn52 or n53 as follows:

A25
auM32k2G3uk2A2

8

U11k2A2
~M52k2G5!

2~M32k2G3!
1•••U

@~M228G2k
2!219a2G2
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,
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auM42k2G4uk3A3

24
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1•••U

@~M2218G2k
2!21144a2G2

2k6#1/2
.

~26!

Note that in the nondispersive case~when allGn’s are negli-
gible! and when onlyM2, M3, andM4 are to be taken into
account, Eq.~25! reduces to

A25
auM3uk2A2

8M2
, ~27!

which agrees with Eq.~4! used to define the nonlinearity
parameter. Under the same conditions the third harmonic
simplifies to

A35
auM4uk3A3

24M2
, ~28!

which is the limit of Eq.~5! for the third harmonic amplitude
given by Thurston and Shapiro for large values of the fourth
order elastic constantK4.

FIG. 2. Frequency dependence of the nonlinearity parameterb for different
PZT samples. Data points represent experimental measurements. The lines
are the theoretical prediction using the perturbation solution of the disper-
sive nonlinear differential equation with parameter values given in Table IV.

TABLE III. Range of amplitudes~10210 m! used in the experiments of Na.

Frequency
K1-

unpolarized K1-polarized S1-unpolarized S1-polarized

5 MHz 16.1–26.2 18–27.8 15.8–29.4 17.1–28.6
~21.15! ~22.9! ~22.6! ~22.85!

10 MHz 13.7–22.6 16.1–23.3 14.2–28.2 16.6–27.5
~18.15! ~19.7! ~21.2! ~22.05!

15 MHz 4.5–11.7 5.4–11.4 5.1–11.6 6.0–11.2
~8.1! ~8.4! ~8.35! ~8.6!

30 MHz 1.9–3.0 2.2–3.4 2.0–4.4 2.1–4.7
~2.45! ~2.8! ~3.2! ~3.4!
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The higher harmonics can be calculated in an analogous
way. The presence of the factoraknAn in the leading term of
the expression for thenth harmonic means that the ampli-
tudes of the harmonics decrease rapidly asn increases.

II. DISCUSSION

A. Application to PZT ceramic samples

Now that we have obtained an analytical solution for the
dispersive nonlinear differential equation in terms of nonlin-
ear constantsMn and dispersion constantsGn , we can adjust
the numbers and find a set of theoretical parameters to match
the experimental observations. The samples under consider-
ation areK1 andS1 samples in both polarized and unpolar-
ized form. TheK1 samples had 45% PbTiO3 with a grain
size approximately 5mm; theS1 samples had 15% PbTiO3
with a grain size approximately 2.5mm. The velocity, den-
sity and thickness are summarized in Table II. The experi-
ments of Na and Breazeale have been performed at four dif-
ferent frequencies of an initially sinusoidal ultrasonic wave:
5, 10, 15, and 30 MHz. For each sample, the range of initial
amplitudes used at these frequencies is listed in Table III.
The mean value is written between brackets. We note that the
applied amplitude diminishes drastically when higher fre-
quencies are used. Experimental measurements of the second
harmonic signal at the four frequencies used and application
of Eq. ~4! lead to the discrete values of the nonlinearity pa-
rameterb listed in Fig. 2. The nonlinearity parameter shows
a frequency-dependent behavior. Using the solution derived
in the previous paragraphs one can find a set of parameters
per sample that fit each experimental data point. The values
of these parameters are given in Table IV. For each sample
these nonlinearity coefficientsMn and dispersion constants
Gn are independent of applied frequency and amplitude. The
nonlinearity parameterb becomes frequency dependent be-
cause of a nonzero magnitude ofG3. However, it should be

noted thatb remains independent of the input amplitude at
any given frequency. The value ofK4 given in Table IV was
necessary for the theoretical model to produce third harmon-
ics as large as actually observed in the experiments. The
definition ofb28 @Eq. ~10!# instead ofb2 @Eq. ~7!# guarantees
that the theoretical value of the new second nonlinearity pa-
rameter is independent of frequency ifG4 is negligible. We
also observe that the magnitudes of the first and this second
nonlinearity parameter do not change significantly for values
of K5 between zero and 1018.

The parameter sets in Table IV were used to make a
theoretical calculation of the nonlinearity parameters for all
four of the samples in the frequency range between 1 and 40
MHz. The results, using interpolation and extrapolation on
the initial mean amplitudes, are shown in Fig. 2 as full lines.
These theoretical curves fit the experimental data points with
amazingly good agreement. It is necessary to allow both
positive and negative values ofG3 in the model in order to
match the experimental measurements forK1 and S1
samples, respectively. The link to a physical phenomenon to
explain this behavior is not yet clear.

With this model one can calculate all constants~both
nonlinear and dispersive! from experimental measurements:
K2 from velocity measurements;K3 andK4 from the first and
second nonlinearity parametersb andb28 at low frequencies;
G2 from the velocity dispersion;G3 from the dispersion~fre-
quency dependence! of the first nonlinearity parameter;G4
from the dispersion of the second nonlinearity parameter, etc.
Since at present there have been no measurements of the
third harmonic signal at different frequencies, we have put a
question mark at the position of theG4 value.

B. Estimation of perturbation theory error

Use of perturbation theory always suggests that a num-
ber of terms are neglected and that only an approximate so-

TABLE IV. List of elastic constants~kg/ms2! and dispersion constants~kg m/s2! for K1 andS1 samples.

Sample K2 K3 K4 G2 G3 G4

K1-unpolarized 14.7531010 2162.031010 3.01531015 2.031023 22.703102 ?
K1-polarized 16.4531010 2193.031010 3.19031015 2.031023 23.603102 ?
S1-unpolarized 14.9531010 2104.031010 25.83031015 2.031023 2.353102 ?
S1-polarized 16.3931010 2112.031010 74.70031015 2.031023 9.503102 ?

TABLE V. Calculated relative amplitudes of second to seventh harmonics resulting from propagation over 9.03 mm in theK1-unpolarized sample. Amplitude
of fundamental at input is given as well as its relative change at the receiver position;K2, K3, K4, G2, andG3 as in Table IV; we assumeK551018;
K6 ,K7 ,...5G4,G5,...50.

Frequency
~MHz!

AmplitudeA
~10210 m!

A1
A

21.0
A2

A

A3

A

A4

A

A5

A

A6

A

A7

A

1.0 22.2000 0.149E-13 0.420E-04 0.575E-07 0.793E-11 0.375E-16 0.700E-22 0.642E-28
5.0 21.1500 0.192E-09 0.989E-03 0.653E-05 0.429E-08 0.966E-13 0.858E-18 0.375E-23
10.0 18.1500 0.666E-08 0.327E-02 0.385E-04 0.433E-07 0.168E-11 0.255E-16 0.191E-21
15.0 8.1000 0.301E-08 0.308E-02 0.259E-04 0.195E-07 0.503E-12 0.511E-17 0.253E-22
20.0 6.2167 0.586E-08 0.380E-02 0.361E-04 0.278E-07 0.727E-12 0.736E-17 0.355E-22
25.0 4.3333 0.528E-08 0.358E-02 0.342E-04 0.227E-07 0.502E-12 0.413E-17 0.155E-22
30.0 2.4500 0.161E-08 0.236E-02 0.188E-04 0.827E-08 0.116E-12 0.574E-18 0.129E-23
35.0 1.9750 0.172E-08 0.188E-02 0.192E-04 0.756E-08 0.891E-13 0.367E-18 0.715E-24
40.0 1.5000 0.127E-08 0.104E-02 0.162E-04 0.510E-08 0.459E-13 0.150E-18 0.242E-24
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lution is found for the general problem. Therefore it is nec-
essary to check whether the solution is being used within the
range of applicability of the perturbation theory, and the
magnitude of the approximation involved.

First, we can check the magnitude of the calculated am-
plitudes compared with the initial amplitude of the pure sinu-
soidal wave at input. Tables V and VI, calculated with the set
of parameters listed in Table IV, and withK5 equal to 1018,
shows that the fundamental amplitudeA1 does not change
significantly from the applied input amplitudeA at any given
frequency. The generated amplitudes of the second and third
harmonic signals appear to be measurable, and they are in-
deed considerably smaller than the fundamental amplitude,
e.g., of the order of 231023 for K1-unpolarized samples and
1022 for S1-polarized samples at 30 MHz for the second
harmonic. The higher orders have amplitudes which diminish
uniformly for all frequencies.

A second check consists of investigating the error in-
volved when we took into account only the zero approxima-
tion of the small factors containingUc, ]Uc/]a, ]2Uc/]a2,
etc. as contributions to the right side of Eq.~13! after substi-
tution of Eq. ~14!; i.e., instead of taking into account the
complete right side

FgS ]U

]a D2M2G ]2U

]a2
1FhS ]U

]a D2G2G ]4U

]a4
~29!

we considered only the first terms:

(
j51

`

M j12S ]U0

]a D j ]2U0

]a2
1G j12S ]U0

]a D j ]4U0

]a4
,

S 5 (
n51

`

Xn sin@n~ka2vt !# D ~30!

and assumed that the difference between the two is negli-
gible.

The use of symbolic software enables us to estimate this
difference. Table VII gives the percentage of relative error
introduced by the truncation. We defined

Estimated error~%!5100•
Max1
Max2

, ~31!

where

Max15MaxperiodUFgS ]U

]a D2M2G ]2U

]a2

1FhS ]U

]a D2G2G ]4U

]a4
2 (

n51

`

Xn sin@n~ka2vt !#

with

U5U01Uc

and

Max25MaxperiodU(
n51

`

Xn sin@n~ka2vt !#U.
We note that the error never exceeds 5%, except forS1 po-
larized samples at 30 MHz. Looking again at Table VI, we
observe that the second and third harmonic amplitudes for
the S1-polarized samples are indeed substantial and that it
might be inaccurate to apply the perturbation theory for
higher frequencies. For the other samples we may conclude
that the use of the perturbation theory is justified.

III. CONCLUSION

We propose a theoretical model which combines higher-
order nonlinearity and generalized dispersion effects to inter-
pret the results of experiments on PZT ceramics reported by
Na and Breazeale. The new dispersive nonlinear differential
equation has been solved by perturbation theory. It provides

TABLE VI. Same as Table VII, for a propagation distance of 8.82 mm in theS1-polarized sample.

Frequency
~MHz!

AmplitudeA
~10210 m!

A1
A

21.0
A2

A

A3

A

A4

A

A5

A

A6

A

A7

A

1.0 23.4000 0.679E-11 0.191E-04 0.123E-05 0.117E-10 0.399E-16 0.664E-22 0.584E-28
5.0 22.8500 0.965E-07 0.500E-03 0.146E-03 0.680E-08 0.113E-12 0.921E-18 0.396E-23
10.0 22.0500 0.536E-05 0.232E-02 0.109E-02 0.977E-07 0.314E-11 0.493E-16 0.409E-21
15.0 8.6000 0.141E-05 0.261E-02 0.560E-03 0.293E-07 0.552E-12 0.505E-17 0.243E-22
20.0 6.8667 0.322E-05 0.485E-02 0.846E-03 0.471E-07 0.938E-12 0.899E-17 0.446E-22
25.0 5.1333 0.384E-05 0.739E-02 0.923E-03 0.477E-07 0.872E-12 0.745E-17 0.317E-22
30.0 3.4000 0.221E-05 0.905E-02 0.698E-03 0.283E-07 0.392E-12 0.243E-17 0.731E-23
35.0 2.8500 0.275E-05 0.130E-01 0.773E-03 0.297E-07 0.371E-12 0.200E-17 0.533E-23
40.0 2.3000 0.260E-05 0.170E-01 0.742E-03 0.249E-07 0.256E-12 0.114E-17 0.265E-23

TABLE VII. Estimated difference~%! between right-hand side of the complete dispersive nonlinear differential equation and the part considered using the
perturbation method.

Frequency Amplitude
K1-

unpolarized K1-polarized
S1-

unpolarized S1-polarized

5 MHz 25310210 m 0.96524 0.94616 0.72935 0.98461
10 MHz 20310210 m 3.03273 2.96520 2.90238 4.48704
15 MHz 10310210 m 3.16582 3.10470 3.08937 4.79720
30 MHz 3310210 m 2.40786 2.39183 4.35913 8.08418
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an analytical expression for the harmonic amplitudes gener-
ated during propagation in the samples. We applied the
model toK1 andS1 samples, both polarized and unpolar-
ized, and found that the analytical solution can be fit to ex-
perimental data by means of one set of parameters in each
case. The introduction ofG3 accounts for the measured fre-
quency dependence of the first nonlinear parameterb. The
abnormally high third harmonic signals can be explained by
assuming values for fourth-order elastic constants. It is im-
portant to note that the set of parameters used in the model is
independent of frequency and initial amplitude. Even though
the physics behind the new differential equation and the real
identity of the dispersive and nonlinear constants is not com-
pletely known at the moment, it is remarkable that this gen-
eralized dispersive-nonlinear model leads to such an ex-
tremely good fit of the data. The value ofK4 was arrived at
under the assumption that the dispersion term does not con-
tribute to the magnitude of the fourth-order elastic constant.
We are investigating the validity of this assumption. Finally,
we believe that the use of perturbation theory in these cases
is justified since the generated amplitudes are small and be-
cause the relative error introduced by truncating the right-
hand side of the differential equation generally is less than
5%.
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